LOCAL THICKNESS OF A WASHING FILM
IN THE ENTRANCE SECTION
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A method of graphic analysis is considered for the calculation of the local thickness of a
liquid film in the entrance section of the transformation of slot flow into film flow over

a vertical plate. The proposed method can ailso be used in calculating the local thicknesses
of a thin layer during liquid flow over curved surfaces,

The wide application of film flow in modern technology {1-4] poses a number of problems involving
the properties of the hydrodynamics of flow in a film. In the washing of vertical and inclined walls by a
thin layer of liquid a smooth entrance section of transformation of slot flow into film flow with a length x;
{(Fig. 1) and a section of steady wave flow of thefilm are clearly distinguished, In Fig. 1,1isthe washed
surface, 2 is the slot, and 3 is the surface of the film, One important problem is the determination of the
local thickness of the washing film in the entrance section.

The solution of this problem is necessary for the establishment of the region of existence of film flow
{an anayltical calculation of the minimum washing density for the given conditions [11) and for the calcula-
tion of the local coefficients of heat and mass transfer [1, 2, 4] in the entrance section. The experimental
and theoretical solution of this problem is difficult since the thickness & of the washing liquid layer depends
on the flow rate of the liquid, the form and curvature of the washed surface, and a number of other factors.
It has not been possible to obtain a general solution allowing for all of these factors {1, 4], aithough such a
solution can be obtained for individual cases (the washing of a vertical plate, vertical tubes, etc.),

As is known [56], the geometrical characteristics of the flow figure in the equations of continuity of
the medium, which can be written in the general form

S wdl = wF = const 1)
F

where wy, is the local velocity in the direction of flow, F is the area of a cross section of the stream, and
w is the mean flow velocity.

To convert Eq. (1) to a more convenient form let us use the dimensionless values
n=w,/ws, y= (wg/vS\ P, r==x,/8 2)

where it is assumed that wg is the mean velocity of the liquid at the exit from the slot of the distributing
device, S is the width of the slot, and xj, y; are the coordinates of the plane in which the flow takes place
(Fig, 1),

In the further transformation of (1) we will assume that the film flow in the entrance section is laminar
and waves are absent at the free surface of thefilm.

Inserting the values of 2) into Eq. (1) we find that for a flat washed surface the equation of continuity
of the medium takes the form

-
{ udy = 15% = 0.5 Revs

0
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where S* = S(wg /vS) %5 is the dimensionless width of the distributnig slot; Re =
4wb/v is the Reynolds number for film flow.

—
o

The solution of Eq. (3) relative to 6 is complicated by the fact that one cannot
always determine the integral on the left side, The determination of & udy

N

0
z, is connected with finding the law of velocity distribution over the cross section of

the film in the entrance section of its flow. For the stabilized flow, when u = ufy)
this problem is simpler than for the case of the entrance section, where u = u(x, y).
The determination of 6 for the entrance section is of great interest since the con-
ditions affecting the nature of the film flow downstream arise in the entrance section.

\,
\2(\\&\\\‘!%

<

3 An equation of motion having the following from [1] is valid in general for
flow in the entrance section:

dw, | dv = v (8%w, / 82> + *w, / 0y®) -+ f, (@)

where 7 is the time and fy is a volumetric force per unit of density and directed
along the x axis (acceleration of free fall).

The solution of Eq. (4) in general form by analytical means presents great difficulties, As shown in
[61, as a first approximation with a degree of convergence of the results which is satisfactory in practice
the flow in the initial section of the film can be described by an equation which with allowance for (2) has
the following dimensioniess form:
Ky

Tl = (5)
This nonlinear differential equation can be solved in the following way.
We assume thta the function ulx, y) has the form
u=@ )+ @+ e )+ @+ ) ?eale) &+ s () + .- (6)

where € = const and ¢; are functions as yet unknown.

Substituting Eq. (6) into (5) and collecting the terms having common multiples of (x + E)k one can
obtain a system of differential equations relative to the functions @y(y), @1(y), ¢2(y), ¢3(y),... Integration
of these equations yields the following equations for ¢j:

(Pa(y):“—fv*'i“‘co% 1 (y)=Cyy v}
(Pz(y)— O -—?P_‘hy 1 Cy
%M=n@%—wrmwm%+@y

CoCayt | 1,%3Cs CiC:
(P4(y): - 043?! + D40 ys‘—"%‘zyll

Ca2 4+ 2C:C 5
g5 (1) = — CER2OO g () = — - CaCayt

As an analysis showed, beginning with ¢;(y) etc. the functions ¢j(y) are small values and can be
neglected in the case under consideration.

The integration constants entering into (7) are determined from the boundary conditions at the surface
of the film and cutside the limits of the initial section. For example, from the condition at x = one can
find that

CO = [6R60'5Frs_2]1‘/31 FrS = W/ (.fv’s)().5

The values Cy, Cy, and C3 have a more complicated form and are determined from the condition of
least deviation from the real solution of Gauss [7], according to which the velocity increment p = u(x, o)

x =0-u in the initial section can be determined from the condition

0.5 Re0-5

S p’dy = min (8)
i}
Satisfying the requirement of a minimum gives
5 08 Re0-5 0.5 Re¥-5 0
2 2dy — Py =
5 § pdy § Poe 80 y ©
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In accordance with {6) and the expression for u(x, y) at the exit from the distributing slot (1) one can
write for p

=6 +%+%+—C§——6(Rew]+y2 [~ 2]~ w0
[ e > (Gt O + €200 + 2] 4 [0 o 00
Substituting (10) into (9) we obtain a system of four nonlinear equations, If the new variables
ay = Co+ = + — 6 (Re)0s
0= — oot 4 GRS 04 i G+ (8973 G 426,09 =5 an
are used one can obtain a simpler system of equations,
With the notation (11) the value p will equal

P = ay + Ky + ay' 1 asp® (12)

The transformation (11) is possible in the case where the functional determinant of the transforma-
tion takes on values not equal to zero. In this case we have
dar dm da1
0Cy aCs 9C3
day dag dag | _ fv*GC:;
3Cy 9Cz 9Cs | 480e
(?af, 8:15 8&5
3C1  9Ca  9Cs |

=0 (13)

Consequently, the transformation adopted is admissible.

With allowance for the notation (11) the Gauss requirement is written in the form of three algebraic
equations relative to aj. The unknown ay, a4, and a5 are determined from these equations by the Cramer
rule. Then the transition is made to the values Cy, Cy, and Cj,

Substituting Eq. (7) into Eq. (6), we obtain the law of velocity distribution in the entrance section of
film flow in the form

w=[C— fr 5]+ @ o e o [y — TR G ey | By — e 20 Bk g
3f *C. 2
+Csy]+(x+a)—4[lzo_3 v — %.i@.cz 4} (x4 8 [ Co +690103 4] Lt [ 02162"35y4]

The constant € entering into Eq. (14) is determined on the basis of Eq. (3) for x = 0, i.e, through the
given flow rate of liquid in the distributing device.

Knowing the law of velocity distribution over the cross section of the flowing film one can integrate
the equation of continuity of the medium (3) in the limits of variation of y from 0 to 6* and obtain the follow-
ing equation:

Qoo — 20 g 00 oot [ 00 — G2 04+ G 64+ e+ x

x Lo 649 — SELOC 005 1 050 07|+ o) [ o0 — PO e "

20103 + Cs? (6*)° 6 CzCs

+(z4-¢8)® ()% =5 (6*) == (0.5 Re"3
The algebraic equation obtained must be solved relative to the value 6* = (wg/ VS)OZS(S, In connection

with the fact that Eq. (15) is complicated and its analytical solution has a cumbersome form, it is conven-
ient to obtain the value of 6* by using a graphic method.

In the graphic method of solving Eq. (15) for a specific value of x to which the film thickness is
5+
sought one must construct in the system of coordinates & udy —y & curve characterizing the left side of
0
Eq. (15) by substituting the values of y in place of 6*. Since ata certain value y = 6* the left 31de of Eq.
(15) is equal to the right side, a point is sought on the ordinate axis whose value corresponds to 0. 5Re’
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5*
/ady /2 The point of intersection of the curve fudy — y with a line parallel to
0

L)

/ / the abscissa and passing at a distance of 0.5Re’*® from this axis gives the

value of 6* sought.

As an example, let us determine the thickness of a film formed by a
Y water streamwith a temperature t = 80° C which flows from a flat-slotted
/”dyzajfﬁ:/gg distributing device with a width S =2-10~% m. It is assumed that the Reynolds
Py number in this case is Re = 465. This means that the mean velocity of dis-
charge from the slot is wg = 0.25 m/sec, while S* = 0,5Re’® ~ 10.8.

%0

g For the given case the constants Cgy, Cy, Cy, and C; entering into Eq.

5 1
70 0.0 0 7.0 (15) are

Co= 148847, (€, = —0.119296

Fig. 2 Coms+0.07T7034, Cyar+0.0612

(16)

The functions @y, ¢y, @5, ¢s, @5 and ¢; and ¢, can be represented in the form

@0 () = 0.5f,*y* + 14.8847y
¢; (y) = —0.119296y a7

¥z () = —0.0002f,* y® + 0.147932 4* + 0.0777034y
@3 (y) = 0.00038f,* > — 0.1226y* + 0.0612y

s (y) = —0.227507 y* + 0.0046 35, @5 (y) = 0.00014 y*
% (3) = 0.00001

On the basis of the values of the functions ¢j(y) (i =0, 1, 2, 3, 4, 5, 6) presented in Eqs, (17) the law
of velocity distribution (6) takes the form

ul(z, y) = —05 fty? + 14.8847 y — 0.119296 (z + &)1y +
+ (z + )7 (0.0777034 y + 0.147932 y* — 0.0002 f,*%) +(z + £)-%0.00038 f,*y5 — 0.1226y% + 0.06123)  (18)

+ (= + €)1 (0.0046y° — 0.2275071 y) + (z + )5 0.00044 y* - (z - €)=6 0.00001 *

Having integrated Eq. (18) with respect to y in the limits from 0 to 6* and having taken specific values
of x for example, x1, X7, X3, X4), One can constructsfl system of curves describing the function

S u(x, y) dy.

Such curves are presented in Fig, 2 for valugzs of x of 1.0, 0.5, and 0.25 (curves 1, 2, and 3, respec-
tively). Since according to the equation of continuity the curves constructed determine a function which at
certain values of 8* (unknown in the present case) must equal 0.5Re"’, a point with the value 0.5Re’® =
10.8 is found on the same ordinate axis and a curve parallel to the abscissa is drawn through it. The point
of intersection of this line with the curves constructed is a unique point satisfying the equation of continuity
of the medium (15) and it determines the film thickness at the given value of x;. For instance, in the
example considered we find that 6* = 8 at x = 1, 6* = 10 at x = 0.5, etc. This means that at the given values
of x the following results are obtained:

=1, (Wg/vSP*8 =8

w =05, (Bg/vS)Pss — 10 (19)

By solving equations of the type (19) we can determine the concrete values (in mm) of the film thick-
ness 6, From these values one can trace the variation in 6 along the flowing liquid film, i.e, find & = 6(x).

This method can also be used in a case when one is considering flow not on a flat but on a curved sur-
face, for example cylindrical. In this case one must take into account those changes which are inherent to
Eqgs. (3) and (14) and to Reynolds number for film flow over a curved surface [1].
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